
Eta Compiler Project: Design and Implementation Overview

Together with a partner, I contributed to the full-stack development of a compiler for the Eta
programming language, progressing through six major programming assignments that spanned lexical
analysis, syntactic analysis, semantic analysis, intermediate representation (IR) generation, assembly code
generation, and optimization.

Project Scope & Technologies:​
 Our compiler was implemented in Java, leveraging tools such as JFlex for lexical analysis, CUP for
parsing, and Argparse4j for command-line argument parsing. The project required designing custom data
structures, including token and AST node classes, and implementing the Visitor pattern to facilitate
traversal and manipulation of the syntax tree and IR nodes.

Design Decisions & Challenges:​
 Key design choices included grouping keywords and symbols for efficient tokenization, implementing a
stack of hashmaps for context management in semantic analysis, and employing the Visitor pattern for
both type checking and IR generation to maximize code reuse. Notable challenges involved handling
unicode and escape sequences during lexing, resolving grammar ambiguities for parsing, and managing
error reporting across compiler stages. Throughout the project, we iteratively refined our parser and
typechecker to align with the Eta Language Specification, balancing flexibility with semantic rigor.

Implementation & Testing:​
 Our workflow emphasized incremental development and testing, with team members specializing in
different compiler components. We developed comprehensive unit and integration tests for each stage,
supplemented by custom edge cases to ensure robust coverage. The compiler was validated using
provided test harnesses and our own test suites, with continuous integration via git to streamline
collaboration.

Results & Impact:​
 By the final stage, our compiler successfully processed Eta programs from source code to executable
binaries, generating assembly code compliant with the Linux ABI and supporting major language
features. We implemented optimizations such as constant folding and nontrivial instruction selection.
While some advanced features (e.g., multidimensional arrays, global strings) remained partially
implemented, our modular architecture and documentation facilitate future extension.

Reflection:​
 This project honed my skills in compiler construction, collaborative software engineering, and
problem-solving under tight deadlines. I gained hands-on experience with language specification
interpretation, modular design, and automated testing, and contributed to a codebase that demonstrates
best practices in maintainability and extensibility.

One lesson that I took away is the importance of clear communication. There were a few instances where
independent systems did not mesh because expectations were not set prior to development. Stitching these
systems together proved to be a major source of frustration. When we became more collaborative, not
only did we avoid these headaches, but the project became more efficient and enjoyable to work on.

